Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
1.
J Biochem Mol Toxicol ; 38(4): e23698, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38501767

RESUMO

Accumulating evidence confirms that sleep insufficiency is a high risk factor for cognitive impairment, which involves inflammation and synaptic dysfunction. Resveratrol, an agonist of the Sirt1, has demonstrated anti-inflammation and neuroprotective effects in models of Alzheimer's disease, Parkinson's disease, and schizophrenia. However, the beneficial effects of resveratrol on sleep deprivation-induced cognitive deficits and its underlying molecular mechanisms are unclear. In the present study, thirty-two male C57BL/6 J mice were randomly divided into a Control+DMSO group, Control+Resveratrol group, SD+DMSO group, and SD+Resveratrol group. The mice in the SD+Resveratrol group underwent 5 days of sleep deprivation after pretreatment with resveratrol (50 mg/kg) for 2 weeks, while the mice in the SD+DMSO group only underwent sleep deprivation. After sleep deprivation, we evaluated spatial learning and memory function using the Morris water maze test. We used general molecular biology techniques to detect changes in levels of pro-inflammatory cytokines and Sirt1/miR-134 pathway-related synaptic plasticity proteins. We found that resveratrol significantly reversed sleep deprivation-induced learning and memory impairment, elevated interleukin-1ß, interleukin-6, and tumor necrosis factor-α levels, and decreased brain-derived neurotrophic factor, tyrosine kinase receptor B, postsynaptic density protein-95, and synaptophysin levels by activating the Sirt1/miR-134 pathway. In conclusion, resveratrol is a promising agent for preventing sleep deprivation-induced cognitive dysfunction by reducing pro-inflammatory cytokines and improving synaptic function via the Sirt1/miR-134 pathway.


Assuntos
Disfunção Cognitiva , MicroRNAs , Masculino , Camundongos , Animais , Resveratrol/farmacologia , Privação do Sono/complicações , Privação do Sono/metabolismo , Sirtuína 1/metabolismo , Dimetil Sulfóxido/metabolismo , Dimetil Sulfóxido/farmacologia , Camundongos Endogâmicos C57BL , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/prevenção & controle , Hipocampo/metabolismo , MicroRNAs/metabolismo , Citocinas/metabolismo , Cognição
2.
J Phys Condens Matter ; 36(23)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38417165

RESUMO

Perpendicular magnetic anisotropy (PMA) of magnets is paramount for electrically controlled spintronics due to their intrinsic potentials for higher memory density, scalability, thermal stability and endurance, surpassing an in-plane magnetic anisotropy (IMA). Nickel film is a long-lived fundamental element ferromagnet, yet its electrical transport behavior associated with magnetism has not been comprehensively studied, hindering corresponding spintronic applications exploiting nickel-based compounds. Here, we systematically investigate the highly versatile magnetism and corresponding transport behavior of nickel films. As the thickness reduces within the general thickness regime of a magnet layer for a memory device, the hardness of nickel films' ferromagnetic loop of anomalous Hall effect increases and then decreases, reflecting the magnetic transitions from IMA to PMA and back to IMA. Additionally, the square ferromagnetic loop changes from a hard to a soft one at rising temperatures, indicating a shift from PMA to IMA. Furthermore, we observe a butterfly magnetoresistance resulting from the anisotropic magnetoresistance effect, which evolves in conjunction with the thickness and temperature-dependent magnetic transformations as a complementary support. Our findings unveil the rich magnetic dynamics and most importantly settle down the most useful guiding information for current-driven spintronic applications based on nickel film: The hysteresis loop is squarest for the ∼8 nm-thick nickel film, of highest hardness withRxyr/Rxys∼ 1 and minimumHs-Hc, up to 125 K; otherwise, extra care should be taken for a different thickness or at a higher temperature.

3.
Genome Biol ; 25(1): 61, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38414075

RESUMO

BACKGROUND: Tartary buckwheat, Fagopyrum tataricum, is a pseudocereal crop with worldwide distribution and high nutritional value. However, the origin and domestication history of this crop remain to be elucidated. RESULTS: Here, by analyzing the population genomics of 567 accessions collected worldwide and reviewing historical documents, we find that Tartary buckwheat originated in the Himalayan region and then spread southwest possibly along with the migration of the Yi people, a minority in Southwestern China that has a long history of planting Tartary buckwheat. Along with the expansion of the Mongol Empire, Tartary buckwheat dispersed to Europe and ultimately to the rest of the world. The different natural growth environments resulted in adaptation, especially significant differences in salt tolerance between northern and southern Chinese Tartary buckwheat populations. By scanning for selective sweeps and using a genome-wide association study, we identify genes responsible for Tartary buckwheat domestication and differentiation, which we then experimentally validate. Comparative genomics and QTL analysis further shed light on the genetic foundation of the easily dehulled trait in a particular variety that was artificially selected by the Wa people, a minority group in Southwestern China known for cultivating Tartary buckwheat specifically for steaming as a staple food to prevent lysine deficiency. CONCLUSIONS: This study provides both comprehensive insights into the origin and domestication of, and a foundation for molecular breeding for, Tartary buckwheat.


Assuntos
Fagopyrum , Domesticação , Fagopyrum/genética , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Genômica , Filogenia
4.
Cancers (Basel) ; 16(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38339378

RESUMO

In the absence of early detection and initial treatment, prostate cancer often progresses to an advanced stage, frequently spreading to the bones and significantly impacting patients' well-being and healthcare resources. Therefore, managing patients with prostate cancer that has spread to the bones often involves using bone-targeted medications like bisphosphonates and denosumab to enhance bone structure and minimize skeletal complications. Additionally, researchers are studying the tumor microenvironment and biomarkers to understand the mechanisms and potential treatment targets for bone metastases in prostate cancer. A literature search was conducted to identify clinical studies from 2013 to 2023 that focused on pain, performance status, or quality of life as primary outcomes. The analysis included details such as patient recruitment, prior palliative therapies, baseline characteristics, follow-up, and outcome reporting. The goal was to highlight the advancements and trends in bone metastasis research in prostate cancer over the past decade, with the aim of developing strategies to prevent and treat bone metastases and improve the quality of life and survival rates for prostate cancer patients.

5.
Viral Immunol ; 37(1): 44-56, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38324005

RESUMO

Hantaan virus (HTNV) is prevalent in Eurasia. It causes hemorrhagic fever with renal syndrome (HFRS). Long noncoding RNAs (lncRNAs) play key roles in regulating innate immunity. Among these, lncRNA negative regulator of interferon response (NRIR) was reported as an inhibitor of several interferon (IFN)-stimulated genes. Our results showed that: NRIR expression was upregulated by HTNV infection in a type I IFN-dependent manner. The expression of NRIR in CD14+ monocytes from HFRS patients in acute phase was significantly higher than that in convalescent phase and healthy controls. HTNV infection in some HTNV-compatible cells was promoted by NRIR. NRIR negatively regulated innate immunity, especially IFITM3 expression. Localized in the nucleus, NRIR bound with HNRNPC, and knockdown of HNRNPC significantly weakened the effect of NRIR in promoting HTNV infection and restored IFITM3 expression. These results indicated that NRIR regulates the innate immune response against HTNV infection possibly through its interaction with HNRNPC and its influence on IFITM3.


Assuntos
Vírus Hantaan , Febre Hemorrágica com Síndrome Renal , Interferon Tipo I , RNA Longo não Codificante , Humanos , Vírus Hantaan/genética , RNA Longo não Codificante/genética , Imunidade Inata , Proteínas de Membrana , Proteínas de Ligação a RNA/genética
6.
IEEE Trans Image Process ; 33: 1614-1626, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38358876

RESUMO

We present a systematic approach for training and testing structural texture similarity metrics (STSIMs) so that they can be used to exploit texture redundancy for structurally lossless image compression. The training and testing is based on a set of image distortions that reflect the characteristics of the perturbations present in natural texture images. We conduct empirical studies to determine the perceived similarity scale across all pairs of original and distorted textures. We then introduce a data-driven approach for training the Mahalanobis formulation of STSIM based on the resulting annotated texture pairs. Experimental results demonstrate that training results in significant improvements in metric performance. We also show that the performance of the trained STSIM metrics is competitive with state of the art metrics based on convolutional neural networks, at substantially lower computational cost.

7.
Cell Commun Signal ; 22(1): 45, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233864

RESUMO

OBJECTIVES: Histological transformation to small cell lung cancer (SCLC) has been identified as a mechanism of TKIs resistance in EGFR-mutant non-small cell lung cancer (NSCLC). We aim to explore the prevalence of transformation in EGFR-wildtype NSCLC and the mechanism of SCLC transformation, which are rarely understood. METHODS: We reviewed 1474 NSCLC patients to investigate the NSCLC-to-SCLC transformed cases and the basic clinical characteristics, driver gene status and disease course of them. To explore the potential functional genes in SCLC transformation, we obtained pre- and post-transformation specimens and subjected them to a multigene NGS panel involving 416 cancer-related genes. To validate the putative gene function, we established knocked-out models by CRISPR-Cas 9 in HCC827 and A549-TP53-/- cells and investigated the effects on tumor growth, drug sensitivity and neuroendocrine phenotype in vitro and in vivo. We also detected the expression level of protein and mRNA to explore the molecular mechanism involved. RESULTS: We firstly reported an incidence rate of 9.73% (11/113) of SCLC transformation in EGFR-wildtype NSCLC and demonstrated that SCLC transformation is irrespective of EGFR mutation status (P = 0.16). We sequenced 8 paired tumors and identified a series of mutant genes specially in transformed SCLC such as SMAD4, RICTOR and RET. We firstly demonstrated that SMAD4 deficiency can accelerate SCLC transition by inducing neuroendocrine phenotype regardless of RB1 status in TP53-deficient NSCLC cells. Further mechanical experiments identified the SMAD4 can regulate ASCL1 transcription competitively with Myc in NSCLC cells and Myc inhibitor acts as a potential subsequent treatment agent. CONCLUSIONS: Transformation to SCLC is irrespective of EFGR status and can be accelerated by SMAD4 in non-small cell lung cancer. Myc inhibitor acts as a potential therapeutic drug for SMAD4-mediated resistant lung cancer. Video Abstract.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Receptores ErbB/genética , Neoplasias Pulmonares/patologia , Mutação/genética , Inibidores de Proteínas Quinases/farmacologia , Proteínas de Ligação a Retinoblastoma/genética , Proteína Smad4/genética , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/patologia , Ubiquitina-Proteína Ligases/genética
8.
Aging (Albany NY) ; 16(2): 1128-1144, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38231482

RESUMO

BACKGROUND: Early life stress can cause cognitive impairment in aged offspring. Environmental enrichment (EE) is considered to be an effective non-pharmacological treatment for improving cognitive decline. The aim of this research was to evaluate the effect of EE, on cognitive impairment in aged offspring induced by maternal sleep deprivation (MSD) and the underlying mechanisms involved to investigate its potential value in clinical practice. METHODS: CD-1 damns were subjected or not to sleep deprivation during late gestation. Twenty-one days after birth, the offspring were assigned to standard or EE cages. At 18 months-old, the learning and memory function of the offspring mice was evaluated using Morris water maze. The hippocampal and prefrontal cortical levels of protein, gene, proinflammation cytokines, and oxidative stress indicators was examined by Western blot, real-time polymerase chain reaction, enzyme linked immunosorbent assay, and biochemical assays. RESULTS: Offspring in MSD group exhibited declined learning and memory abilities compared with control animals. Moreover, the hippocampal and prefrontal cortical levels of Sirtuin1 (Sirt1), peroxisome proliferator-activated receptor-gamma coactivator-1 alpha (PGC-1α), postsynaptic density protein-95, and synaptophysin were lower and those of proinflammation cytokines higher in the MSD group; meanwhile, the superoxide dismutase content was higher and the malondialdehyde and reactive oxygen species contents were lower. However, these deleterious changes were ameliorated by exposure to EE. CONCLUSIONS: EE attenuates MSD-induced cognitive impairment, oxidative stress, and neuroinflammation and reverses the reduction in synaptic protein levels in aged offspring mice via the Sirt1/PGC-1α pathway.


Assuntos
Disfunção Cognitiva , Privação do Sono , Camundongos , Animais , Gravidez , Feminino , Privação do Sono/complicações , Privação do Sono/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/terapia , Disfunção Cognitiva/metabolismo , Mitocôndrias/metabolismo , Citocinas/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo
9.
Sci Total Environ ; 915: 170129, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38242456

RESUMO

Decabromodiphenyl ether (BDE-209) is one of the most widely used flame retardants that can infect domestic and wildlife through contaminated feed. Nano­selenium (Nano-Se) has the advantage of enhancing the anti-oxidation of cells. Nonetheless, it remains uncertain whether Nano-Se can alleviate vascular Endothelial cells damage caused by BDE-209 exposure in chickens. Therefore, we established a model with 60 1-day-old chickens, and administered BDE-209 intragastric at a ratio of 400 mg/kg bw/d, and mixed Nano-Se intervention at a ratio of 1 mg/kg in the feed. The results showed that BDE-209 could induce histopathological and ultrastructural changes. Additionally, exposure to BDE-209 led to cardiovascular endoplasmic reticulum stress (ERS), oxidative stress and thioredoxin-interacting protein (TXNIP)-pyrin domain-containing protein 3 (NLRP3) pathway activation, ultimately resulting in pyroptosis. Using the ERS inhibitor 4-PBA in Chicken arterial endothelial cells (PAECs) can significantly reverse these changes. The addition of Nano-Se can enhance the body's antioxidant capacity, inhibit the activation of NLRP3 inflammasome, and reduce cellular pyroptosis. These results suggest that Nano-Se can alleviate the pyroptosis of cardiovascular endothelial cells induced by BDE-209 through ERS-TXNIP-NLRP3 pathway. This study provides new insights into the toxicity of BDE-209 in the cardiovascular system and the therapeutic effects of Nano-Se.


Assuntos
Sistema Cardiovascular , Éteres Difenil Halogenados , Selênio , Animais , Células Endoteliais/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR , Galinhas/metabolismo , Piroptose , Selênio/metabolismo , Estresse do Retículo Endoplasmático
10.
Comput Biol Med ; 168: 107712, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38006825

RESUMO

Deterministic Lateral Displacement (DLD) device has gained widespread recognition and trusted for filtering blood cells. However, there remains a crucial need to explore the complex interplay between deformable cells and flow within the DLD device to improve its design. This paper presents an approach utilizing a mesoscopic cell-level numerical model based on dissipative particle dynamics to effectively capture this complex phenomenon. To establish the model's credibility, a series of numerical simulations were conducted and the numerical results were validated with nominal experimental data from the literature. These include single cell stretching experiment, comparisons of the morphological characteristics of cells in DLD, and comparison the specific row-shift fraction of DLD required to initiate the zigzag mode. Additionally, we investigate the effect of cell rigidity, which serves as an indicator of cell health, on average flow velocity, trajectory, and asphericity. Moreover, we extend the existing theory of predicting zigzag mode for solid spherical particles to encompass the behavior of red blood cells. To achieve this, we introduce a new concept of effective diameter and demonstrate its applicability in providing highly accurate predictions across a wide range of conditions.


Assuntos
Deformação Eritrocítica , Eritrócitos , Filtração
11.
J Neuroimmunol ; 386: 578252, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-38086228

RESUMO

Growing evidence indicates that neuroinflammation plays a critical role in anxiety, depression, and cognitive impairment. Sleep loss disrupts the host's immune balance and increases neuroinflammation. This study explored whether chronic sleep deprivation aggravates lipopolysaccharide-induced anxiety, depression, and cognitive impairment and assessed the underlying mechanisms. Lipopolysaccharide (250 µg/kg) was administered to adult mice for 9 days, accompanied with daily intermittent sleep deprivation from 12:00 to 18:00 by using an activity wheel. Anxiety, depression, and cognitive function were evaluated using a task battery consisting of an open field, elevated plus maze, tail suspension, forced swimming, and Morris water maze tests. The levels of pro-inflammatory cytokines and synaptic plasticity-associated proteins were examined by enzyme-linked immunosorbent assay and western blot, respectively. The results showed that lipopolysaccharide increased anxiety- and depression-like behaviors, impaired cognitive function, uprelated interleukin-1ß (IL-1ß), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), and decreased brain-derived neurotrophic factor (BDNF), postsynaptic density-95 (PSD-95), and synaptophysin (SYN), which were aggravated by chronic sleep deprivation. These results suggest that chronic sleep deprivation exerted adverse effects on lipopolysaccharide-induced anxiety, depression, and cognitive impairment, which was associated with changes in pro-inflammatory cytokines and synaptic plasticity associated proteins.


Assuntos
Disfunção Cognitiva , Citocinas , Camundongos , Animais , Citocinas/metabolismo , Lipopolissacarídeos/toxicidade , Lipopolissacarídeos/metabolismo , Depressão/induzido quimicamente , Depressão/metabolismo , Privação do Sono/complicações , Doenças Neuroinflamatórias , Disfunção Cognitiva/induzido quimicamente , Ansiedade/induzido quimicamente , Plasticidade Neuronal , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Interleucina-6/metabolismo , Hipocampo
12.
Adv Mater ; 36(14): e2312824, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38161222

RESUMO

Inversion symmetry breaking is critical for many quantum effects and fundamental for spin-orbit torque, which is crucial for next-generation spintronics. Recently, a novel type of gigantic intrinsic spin-orbit torque is established in the topological van der Waals (vdW) magnet iron germanium telluride. However, it remains a puzzle because no clear evidence exists for interlayer inversion symmetry breaking. Here, the definitive evidence of broken inversion symmetry in iron germanium telluride directly measured by the second harmonic generation (SHG) technique is reported. The data show that the crystal symmetry reduces from centrosymmetric P63/mmc to noncentrosymmetric polar P3m1 space group, giving the threefold SHG pattern with dominant out-of-plane polarization. Additionally, the SHG response evolves from an isotropic pattern to a sharp threefold symmetry upon increasing Fe deficiency, mainly due to the transition from random defects to ordered Fe vacancies. Such SHG response is robust against temperature, ensuring unaltered crystalline symmetries above and below the ferromagnetic transition temperature. These findings add crucial new information to the understanding of this interesting vdW metal, iron germanium telluride: band topology, intrinsic spin-orbit torque, and topological vdW polar metal states.

13.
Plant Biotechnol J ; 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38062934

RESUMO

Rutin, a flavonoid rich in buckwheat, is important for human health and plant resistance to external stresses. The hydrolysis of rutin to quercetin underlies the bitter taste of Tartary buckwheat. In order to identify rutin hydrolysis genes, a 200 genotypes mini-core Tartary buckwheat germplasm resource was re-sequenced with 30-fold coverage depth. By combining the content of the intermediate metabolites of rutin metabolism with genome resequencing data, metabolite genome-wide association analyses (GWAS) eventually identified a glycosyl hydrolase gene FtGH1, which could hydrolyse rutin to quercetin. This function was validated both in Tartary buckwheat overexpression hairy roots and in vitro enzyme activity assays. Mutation of the two key active sites, which were determined by molecular docking and experimentally verified via overexpression in hairy roots and transient expression in tobacco leaves, exhibited abnormal subcellular localization, suggesting functional changes. Sequence analysis revealed that mutation of the FtGH1 promoter in accessions of two haplotypes might be necessary for enzymatic activity. Co-expression analysis and GWAS revealed that FtbHLH165 not only repressed FtGH1 expression, but also increased seed length. This work reveals a potential mechanism behind rutin metabolism, which should provide both theoretical support in the study of flavonoid metabolism and in the molecular breeding of Tartary buckwheat.

14.
Front Behav Neurosci ; 17: 1271653, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38074521

RESUMO

Maternal exposure to inflammation may represent a major risk factor for neuropsychiatric disorders with associated cognitive dysfunction in offspring in later life. Growing evidence has suggested that resveratrol exerts a beneficial effect on cognitive impairment via its anti-inflammatory and antioxidant properties and by ameliorating synaptic dysfunction. However, how resveratrol affects maternal immune activation-induced cognitive dysfunction and the underlying mechanisms are unclear. In the present study, pregnant dams were given an intraperitoneal injection of lipopolysaccharide (LPS; 50 µg/kg) on gestational day 15. Subsequently, the offspring mice were treated or not with resveratrol (40 mg/kg) from postnatal day (PND) 60 to PND 88. Male offspring were selected for the evaluation of cognitive function using the Morris water maze test. The hippocampal levels of pro-inflammatory cytokines were examined by ELISA. The mRNA and protein levels of sirtuin-1 (SIRT1), brain-derived neurotrophic factor (BDNF), postsynaptic density protein 95 (PSD-95), and synaptophysin (SYP) were determined by RT-qPCR and western blot, respectively. The results showed that male offspring mice exposed to LPS in utero exhibited learning and memory impairment. Additionally, the levels of interleukin (IL)-1ß, IL-6, and tumor necrosis factor-alpha (TNF-α) were increased while those of SIRT1, BDNF, PSD-95, and SYP were decreased in male offspring of LPS-treated mothers. Treatment with resveratrol reversed cognitive impairment and attenuated the increase in the levels of pro-inflammatory cytokines induced by maternal immune activation in the offspring mice. Furthermore, resveratrol reversed the deleterious effects of maternal immune activation on SIRT1, BDNF, PSD-95, and SYP levels in the hippocampus. Collectively, our results suggested that resveratrol can effectively improve learning and memory impairment induced by maternal immune activation via the modulation of inflammation and synaptic dysfunction.

15.
Nano Lett ; 23(22): 10189-10195, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37931216

RESUMO

The unique discovery of the magnetic exciton in van der Waals antiferromagnet NiPS3 arises between two quantum many-body states of a Zhang-Rice singlet excited state and a Zhang-Rice triplet ground state. Simultaneously, the spectral width of photoluminescence originating from this exciton is exceedingly narrow as 0.4 meV. These extraordinary properties, including the extreme coherence of the magnetic exciton in NiPS3, beg many questions. We studied doping effects using Ni1-xCdxPS3 using two experimental techniques and theoretical studies. Our experimental results show that the magnetic exciton is drastically suppressed upon a few % Cd doping. All this happens while the width of the exciton only gradually increases and the antiferromagnetic ground state is robust. These results highlight the lattice uniformity's hidden importance as a prerequisite for coherent magnetic exciton. Finally, an exciting scenario emerges: the broken charge transfer forbids the otherwise uniform formation of the coherent magnetic exciton in (Ni,Cd)PS3.

16.
Urol J ; 20(6): 424-428, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-37990798

RESUMO

PURPOSE: To evaluate the efficacy of frenulum protection technique of the disposable circumcision suture device (DCSD) in adult males. MATERIALS AND METHODS: Atotal of 53 adult males were diagnosed with redundant prepuce and underwent circumcision with DCSD using frenulum protection technique. The main preoperative and postoperative measure of the length of penile frenulum was evaluated. Other data such as edema rate, intraoperative blood loss, operation time, postoperative pain, staple falling off time, incision infection rate, and evaluation of satisfaction rate with penis appearance were documented in the study. RESULTS: There was no significant difference in preoperative and postoperative frenulum length for each patient. The mean length of the penile frenulum before and after surgery was 2.25 ± 0.36 cm and 2.23 ± 0.39 cm, respectively (p = .31). The rate of frenulum length preservation was 100%. All the patients had no excessive resection of the frenulum and no serious complication happened after surgery. The satisfaction rate of postoperative penis appearance from patients' evaluation was 98.1% (52/53). CONCLUSION: The frenulum protection technique was simple and operable, which could help the operator to accurately identify the most distal position of the frenulum and retain a sufficient length of frenulum during DCSD circumcision.


Assuntos
Circuncisão Masculina , Masculino , Adulto , Humanos , Circuncisão Masculina/métodos , Equipamentos Descartáveis , Pênis/cirurgia , Prepúcio do Pênis , Suturas
17.
Zhongguo Zhen Jiu ; 43(11): 1338-1342, 2023 Aug 19.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-37984925

RESUMO

Meridian-tendon is a central concept in meridian theory of TCM, and its basic research has been increasingly emphasized. While there is no unified understanding of the essence of meridian-tendon, the concept that function of fascia could partially reflect the functions of meridian-tendons has reached consensus in the academic community. This article suggests that under the guidance of meridian-tendon theory, based on previous research foundation of fascia, focusing on adopting fascia research methods, the mechanisms of tender point hyperalgesia and abnormal proliferation related to meridian lesions should be adopted to explain yitong weishu (taking the worst painful sites of muscle spasm as the points), and the mechanisms of meridian intervention efficacy should be adopted to explain yizhi weishu (feelings from patients and acupuncture operators). Furthermore, this article provides an analysis of the future trends in basic research of meridian tendons.


Assuntos
Terapia por Acupuntura , Acupuntura , Meridianos , Humanos , Tendões , Dor , Projetos de Pesquisa , Pontos de Acupuntura
18.
Pestic Biochem Physiol ; 196: 105625, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37945258

RESUMO

Cypermethrin (CYP, IUPAC name: [cyano-(3-phenoxyphenyl)methyl] 3-(2,2-dichloroethenyl)-2,2-dimethylcyclopropane-1-carboxylate) is a pyrethroid insecticide that poses a threat to the health of humans and aquatic animals due to its widespread use and environmental contamination. However, the mechanism of CYP on apoptosis, autophagy and inflammation in hepatocytes of carp (Cyprinus carpio) is unknown. We hypothesized that CYP caused damage to hepatocytes through the endoplasmic reticulum stress (ERS) pathway, CCK-8 was used to detect the toxic effects of different doses of CYP on hepatocytes, and finally low (L, 10 µM), medium (M, 40 µM), and high (H, 80 µM) doses of CYP was selected to construct the model. ROS staining, oxidative stress-related indices (MDA, CAT, T-AOC, SOD), AO/EB staining, MDC staining, and the expression levels of related genes were detected using qRT-PCR and western blot. Our results showed that CYP exposure resulted in an increase in ROS production, an increase in MDA content, and a decrease in the activity of CAT, SOD, and T-AOC in hepatocytes; the proportion of apoptotic, necrotic, and autophagic cells increased significantly in a dose-dependent manner. We also found that CYP exposure increased the expression levels of endoplasmic reticulum-related genes (GRP78, PERK, IRE-1, ATF-6 and CHOP), apoptosis (Bcl-2, Bax, Caspase-3, Caspase-9 and Cyt-c) and autophagy-related genes (LC3b, Beclin1 and P62) also showed dose-dependent changes, and the expression levels of inflammation-related genes (NF-κB, TNF-α, IL-1ß, IL-6) were also significantly elevated. Thus, we demonstrated that CYP exposure caused apoptosis, autophagy and inflammation in hepatocytes via ERS-ROS-NF-κB axis. This research contributes to our understanding of the molecular mechanisms underlying CYP-induced damage in hepatocytes of carp (Cyprinus carpio).


Assuntos
Carpas , Piretrinas , Humanos , Animais , NF-kappa B/genética , NF-kappa B/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Carpas/metabolismo , Apoptose , Piretrinas/toxicidade , Hepatócitos , Inflamação/induzido quimicamente , Estresse Oxidativo , Superóxido Dismutase/metabolismo , Autofagia , Estresse do Retículo Endoplasmático
19.
Therap Adv Gastroenterol ; 16: 17562848231206991, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37900007

RESUMO

Background: Magnetically controlled capsule endoscopy (MCCE) is a non-invasive, painless, comfortable, and safe equipment to diagnose gastrointestinal diseases (GID), partially overcoming the shortcomings of conventional endoscopy and wireless capsule endoscopy (WCE). With advancements in technology, the main technical parameters of MCCE have continuously been improved, and MCCE has become more intelligent. Objectives: The aim of this systematic review was to summarize the research progress of MCCE and artificial intelligence (AI) in the diagnosis and treatment of GID. Data Sources and Methods: We conducted a systematic search of PubMed and EMBASE for published studies on GID detection of MCCE, physical factors related to MCCE imaging quality, the application of AI in aiding MCCE, and its additional functions. We synergistically reviewed the included studies, extracted relevant data, and made comparisons. Results: MCCE was confirmed to have the same performance as conventional gastroscopy and WCE in detecting common GID, while it lacks research in detecting early gastric cancer (EGC). The body position and cleanliness of the gastrointestinal tract are the main factors affecting imaging quality. The applications of AI in screening intestinal diseases have been comprehensive, while in the detection of common gastric diseases such as ulcers, it has been developed. MCCE can perform some additional functions, such as observations of drug behavior in the stomach and drug damage to the gastric mucosa. Furthermore, it can be improved to perform a biopsy. Conclusion: This comprehensive review showed that the MCCE technology has made great progress, but studies on GID detection and treatment by MCCE are in the primary stage. Further studies are required to confirm the performance of MCCE.

20.
Plant J ; 116(6): 1766-1783, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37699038

RESUMO

Brassinosteroids (BRs) are a class of steroid phytohormones that control various aspects of plant growth and development. Several transcriptional factors (TFs) have been suggested to play roles in BR signaling. However, their possible relationship remains largely unknown. Here, we identified a rice mutant dwarf and low-tillering 2 (dlt2) with altered plant architecture, increased grain width, and reduced BR sensitivity. DLT2 encodes a GIBBERELLIN INSENSITIVE (GAI)-REPRESSOR OF GAI (RGA)-SCARECROW (GRAS) TF that is mainly localized in the nucleus and has weak transcriptional activity. Our further genetic and biochemical analyses indicate that DLT2 interacts with two BR-signaling-related TFs, DLT and BRASSINAZOLE-RESISTANT 1, and probably modulates their transcriptional activity. These findings imply that DLT2 is implicated in a potentially transcriptional complex that mediates BR signaling and rice development and suggests that DLT2 could be a potential target for improving rice architecture and grain morphology. This work also sheds light on the role of rice GRAS members in regulating numerous developmental processes.


Assuntos
Brassinosteroides , Oryza , Proteínas de Plantas/metabolismo , Transdução de Sinais/genética , Grão Comestível/metabolismo , Regulação da Expressão Gênica de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...